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Monte Carlo Simulation of Error Propagation in the Determination of Binding Constants
from Rectangular Hyperbolae. 1. Ligand Concentration Range and Binding Constant
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Rectangular hyperbolae have been used both to estimate equilibrium constants and to describe chemical
processes dictated by equilibria. The propagation of error from the experimental measurements to the estimated
constants, however, has not been well understood. In this paper, simulated experiments are used in a Monte
Carlo analysis to compare the distributions of binding constants estimated by various calculation methods
under different experimental conditions. The necessity of matching the range of additive (ligand) concentrations
to the binding constant of the chemical interaction is demonstrated. It is shown that the relative error in the
binding constant estimate is lower when the additive concentrations cover the central to upper portion of the
binding isotherm (i.e., where the fraction of analyte complexed is above 0.5). The difference in the slope of
the binding isotherm at the lowest and highest additive concentration used for the measurements is a good
indicator of the reliability of the binding constant estimated under a specific set of conditions.

Introduction the substrate in the absence of ligamd the optical path length,
Over the past 85 years, rectangular hyperbolae have been use{ﬁ"] is the initial cpr_u_;entraﬂon of the supstratgL andes are

to describe a variety of chemical properties influenced by e molar absorpt!vmes_of the s_ub_strate/llgand complex_and the

molecular equilibria including spectrophotometdy? NMR substrate respectiveli( is the binding constant, and [L] is the

chemical shift$13 Michaelis—Menten kineticd4—2 jon trans- ligand conpentraﬂon. . . .
port across membranéspharmacokinetic*-26 and even algal If NMR is used to study chemical binding, eq 1 is usually
growth rateg’~2° All of these studies are based on a certain written as

chemical response dictated by a 1:1 interaction between a (0g, — OJKIL]
substrate and a ligand. A rectangular hyperbola generally can (0 — 09 =

be expressed as 1+K[L]

dx whered is the measured chemical shifig and s, are the
y= T ex 1) chemical shifts of the substrate and the substrate/ligand complex,
respectively K is the binding constant, and [L] is the ligand
wherey is the response is the ligand concentration, and d, e, ~concentration.
and f are constants. One of the constants is redundant since eq Michaelis—Menten kinetics present eq 1 as
1 can be rearranged, allowing the response to be described using V. [S]
two constants. One constant describes the equilibrium (the p=—m
binding constant or dissociation constant) while the other K, + [S]
describes the maximum response range (i.e., the difference
between the maximum and minimum response). Equation 1 wherev is the observed rate of the reactidf is the maximum
can be expressed using either association constants (commofiate of the reaction achieved when the catalyst is fully
in spectroscopic studies) or dissociation constants (common incomplexed, [S] is the concentration of the substrate,kands
kinetic and biochemical studies). the dissociation constant. Equation 4 takes a slightly different
Equations taking the general form of eq 1 have been form than egs 2 and 3 because it is expressed according to the
developed independently in many research areas includingdissociation constankg = 1/K).

®3)

(4)

spectrophotometry, NMR, and MichaeliMenten kinetics. Recently, it has been shown that, in capillary electrophoresis
When spectrophotometric methods are used, eq 1 is usually(CE), analyte mobility in the presence of analyte-additive
expressed as interactions can be described accordingttf

A=Ay _ [Sol(esL — €9KIL] (auep,AC B /’tep,A)KAC[C]

(%)

A =
b 1+ K[L] @ (tep ™ Hepa) 1+ KaclCl

whereA is the measured absorbanég,is the absorbance of Whereﬂsp is the net electrophoretic mobility of the analyteis

. g oud be add g fa correction factor which normalizgug\p to conditions where
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TABLE 1: Equations Used in CE and Variances in the Transformedy for the Different Calculation Methods

calculation method equation of,a
nonlinear regression A (Uep.ac — tep NKAc[C] Vo
(V/’{ep - /uep,A) = y
1+ K,c[C]
double reciprocal 1 1 1 1 &2

y

= =+
A — — -y
(’V,L{ep - /uep,A) (:uep,AC /Mep,A)KAC [C] (/"ep,AC /’tep,A) (Vﬂ/;p _ /’{ep,A)4

y-reciprocal [C] _ [C] N 1 [C] 205
(W’:p - Iuep,A) (Mep,Ac - ﬂep,A)KAc (:uep,AC - Mep,A)KAc (W?p — Mep,A)4

(e )

x-reciprocal (V#Qp — Uep )

[C] - _KAC(V‘“:p - /uep,A) + KAC(/"ep,AC - /"ep,A)
24}, is the variance of the transformetlo; is the variance inuuf, — uep); the weight for each point is equal toof/

mobilities of the analyteadditive complex AC and the un-  of ligand concentrations over which responses are measured has

complexed analyte, respectively. Clearly, eq 5 is also analogousbeen identified as one of the most important aspects of the

to eq 1. experimental desigh?* Intuitively, to minimize the error in

The constants in egs 2 to 5 are usually estimated by measuringhe estimate oK, [L] should cover a significant portion of the

the response at several ligand concentrations followed by onepossible response range with a number of points near the ligand

of several regression procedures. Although a nonlinear regres-concentration where half of the substrate is complexed. Theories

sion can be used to solve the constants directly, eq 1 is oftendo suggest that the error in the estimate of the equilibrium

linearized by one of the following equations: constant will be minimized when responses are measured over
the central portion of the binding isotherm (where the fraction

(6) of analyte complexed ranges from 0.2 to 0"8)Several Monte

x+g )

y__&,.8@
- 1yt (8)

Carlo analyses have been made to determine the effect of the
ligand concentration range on the estimate of the equilibrium
constant’647.50 Unfortunately, these studies only tested a few
conditions and only qualitative interpretations could be extracted.
Not enough data were collected to truly assess the theories
proposed to describe the effect of ligand concentration on the
error in binding constant estimates.

. . In this paper, the effect of the ligand concentration on the
The constants are estimated from the slopes and the interceptg,..o; in the estimate oK is studied more thoroughly. The

Of the straight I_ineé_. The use of €qs 68 have acquired nonlinear regression is compared with the three linearizations
different names in different research fields but can be referred ¢ 1o binding isotherm. The error and bias in the binding

to most generally as double reciprocal (eq 6; also referred to asqqngtant estimates is compared over a wide range of conditions,
Lineweaver-Burk' or BenesiHildebrand plots),y-reciprocal ¢y, ding cases where the fraction of substrate complexed is
(eq 7), andx-reciprocal (eq 8; also referred to as Edflier below 0.2 for all [L] or above 0.8 for all [L]. The terminology
Scatchzflrﬂzll plots) methods. The linearizations of eq 5 are developed for CE (eq 5) will be used since this is the primary
shown in Table 1. , _research interest of our group (i.e., analyte and additive are
It has long been realized that although the nonlinear reégressionynajagous to substrate and ligand respectively). The constants
and each of the three linearizations are based on the sameq errors in the data are typical for CE. It should be
gquatlon, they often give dlfferent.estlmates and confidence emphasized that although CE is used as an example in this paper,
intervals for the constants when applied to the same dat&$et. 6 equations are analogous to those used in many other research

Linearizing eq 1 to eqs 6 to 8 invalidates some of the jaaq allowing the conclusions presented here to be applied to
assumptions made in performing the least squares regression,mplexation chemistry in general.

analyses, including introducing error into the independent

variable and transforming the error in the data to a non-GaussianMe,[hods

distribution. The data spacing is also changed when eq 1 is

rearranged to eqs 6 and 8, which alters the weight on certain Monte Carlo simulations of a dynamic complexation CE

measurements. These problems can often be overcome if theexperiment were performed using a Visual Basic macro in

data is weighted according to the functions listed in Table 1. Microsoft Excel 5.0 on a Pentium PC. The simulations were
Because of the complexity of the regression calculations, it made assuming the followinguepa = 2.5 x 1074 cm? V1

is difficult to show how error is propagated through the different s uepac= 1.0 x 1074 cn? V1 s71, separation potentiak

methods analytically. Dowd and Ridgdirst used Monte Carlo 30 kV, total capillary length= 57 cm, length to the detecter

analyses to compare the different calculation methods and their50 cm. Simulations were made for binding constants ranging

estimates of the constants. Since then a number of researcherfom 1 to 4000 M with a set range of additive concentrations.

have used Monte Carlo analyses to simulate binding experi- The additive concentrations used were 5, 23.75, 42.5, 61.25,

ments?-52 |t has been shown that the nonlinear regression and 80 mM. The concentration of the analyte is assumed to be

method minimizes both the error and the bias in the estimatesmuch smaller than that of the additive, allowing the initial

of the constants. additive concentration ([G] to be substituted for [C] in eq®.
Another concern is the effect of the experimental design on This is consistent with the other methods described by eds 2

the constants estimated using the different methods. The rangeEquation 5 was used to calculate the true net analyte mobility
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Figure 1. Binding isotherms for a set range of additive (ligand)
concentrations at k= 1 M1 (O), 3.125 M1 (@), 15 M1 (O0), 50 M2
(m), 200 M1 (<), 800 M1 (#), and 4000 M? (a).
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1.0 — were used because of their robustness and to minimize the

influence of the grossly incorrect estimates that can occur when
the additive concentrations do not cover the optimal range of
the binding isotherm. The solid line indicates the true equi-
librium constant. Therefore, deviation of the median from the
solid line indicates bias in the calculation method. The dashed
lines depict the 95% range of the distributions. The 95% range
gives an indication of the reliability of the calculation method.
Obviously a narrow distribution of binding constant estimates
is preferable.

Comparing the different calculation methods shows that the
95% range of the nonlinear regression method is generally
smaller than that of the unweighted linear methods. In all three
linearizations the distributions using weighted data are narrower
than the unweighted foK = 1-50 M~1. When ideally
weighted, all of the calculation methods studied gave nearly
identical 95% ranges of the binding constant estimates. The
weighted and unweighted nonlinear regressions are identical
since no weighting is required when the errors in the data points
are equal. The elimination of the weighting procedure is a major
advantage of the nonlinear regression method. It should be

at each additive concentration. The random number generatore.mphas'zed that because the errors in this experiment were

in Excel 5.0 was used to produce an experimental mobility S|mul_ated, it was possible to Calc‘.”ate the_ ex_act weighting
according to a normal distribution which had a mean equal to functions fo.r eqch method. '.” practical qppllcanon_s, tth error
the true mobility and a standard deviation of 8 75.0~7 cn? _at each pomt_ IS _usually .eSt'matEd’ which may give rise to
V-1sL Two experimental mobilities were generated for each maccurate weighting functions. The 95% ranges _pr_esented for
additive concentration. Four experimental mobilities were the weighted methods therefore represent the minimum range
generated for an additive concentration of 0 mM, again with a POssible with ideal weighting functions. The nonlinear regres-
standard deviation of 8.75 107 cn? V-1 571, to calculate sion method is the least dependent on the choice of the weighting
lepa The experimental mobilities were then used to estimate fun_ction a_nd shOL_JId provi(_ie t_he most reliable binding constant
the equilibrium constant according to one of the calculation €Stimate in practical applications.

methods. All regressions were made according to the least- As shown in Figure 1, & = 50 M1, the fraction of analyte
squares varianeecovariance method. This procedure was complexed ranges from 0.2 to 0.8. It has been previously
repeated 1000 times for each calculation method at &ach  suggested that this is the range of additive concentrations that
Thirty seven values foK were tested, giving rise to over 3.6 minimizes the error in the estimate of the binding constant.
million simulated measurements, emphasizing the necessity ofAs the binding constant decreases from 50!Mhe fraction of

0.8 —

0.6 —

0.4 —

0.2 —

Fraction of Analyte Complexed

0.0 —

o

the computational approach used.

The effect of varyindK for a set range of additive concentra-
tions is shown in Figure 1. AK changes, so does the portion

of the binding isotherm covered by the additive concentrations.

At low K, the additive concentrations only cover the lower

analyte complexed at some of the additive concentrations drops
below the 0.2 threshold. Whel is below 3.125 M1, the
fraction of analyte complexed is less than 0.2 for all of the
additive concentrations used.

At low binding constants, where the fraction of analyte

portion of the binding isotherm (i.e., the portion where the complexed is below 0.2, there is a significant increase in the
fraction of analyte complexed is low). Conversely, at hi§h 9504 range of th& estimates, especially when the three linear
the additive concentrations only cover the upper portion of the methods are used. When the additive concentrations only cover
binding isotherm (i.e., the portion where the fraction of analyte the lower portion of the binding isotherm, it is impossible to
complexed is high). Therefore, varyirgfor a set group of ~ accurately determine the valuekf In some cases, a substantial
additive concentrations is analogous to scaling the additive portion of the estimates was negative. At I¢walues, the
concentration range for a skt The absolute values &fand  gjstriputions of binding constant estimates are no longer
the additive concentrations are not as important as the portionsymmetrical around the median. This may cause problems when

of the binding isotherm that is covered when both are consid- .3cjating the confidence intervals for the estimated binding
ered. AtK =50 M1, the fraction of analyte complexed ranges constants.

from 0.2 10 0.8, which has been previously suggested as the Bias becomes significant in the three linearized methods

ideal range of additive concentratiots.At K = 3.125 M™%, L . :
the fraction of analyte complexed is equal to or below 0.2 for when th? b.md'.ng constant is onv. l.n Some cases, the medians
all of the additive concentrations used in this paper. KAt of the dlstrlbutlon_s Were_negatNe, |nd|cat|ng _that th_e method
800 M1, the fraction of analyte complexed is equal to or above 98V€ more negative estimates fdrthan positive estimates.
0.8 for all of the additive concentrations. We_|ght|ng d|o_l nqt remove the b_|as from the bl_ndln_g constant
estimates. Bias is usually a serious problem since it cannot be
eliminated through replicate experiments. In binding experi-
ments though, the amount of bias present at kig small in
Error and Bias at Low Equilibrium Constants. Figure 2 relation to the 95% ranges of the distributions, suggesting that
depicts the distributions of the binding constants estimated usingbias is not the most critical problem in this case. No bias was
the different calculation methods fd¢ = 1-50 M~%. The detected when the nonlinear method was used to estimate the
markers represent the medians of the distributions. Mediansequilibrium constant, further supporting the premise that the

Results and Discussion
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Figure 2. The distributions of the binding constant estimates calculated using (A) double reciprocgrg@procal, (C)x-reciprocal, and (D)
nonlinear regression methods ower= 1-50 M~1. The markers are the medians of the distributions for the weiglig¢duid unweighted<¢)
methods. The dashed lines define the 95% ranges of the distributions for the weighted (- -) and unweighjeddthods.

nonlinear regression method is more reliable than the threeweighting function (i.e., nonlinear, double reciprocal, »or
linearizations. reciprocal).

Error and Bias at High Equilibrium Constants. Figure 3 Bias is significant in the:-reciprocal plot at higheK values,
depicts the distributions of the binding constant estimates for and weighting the data does not alleviate the problem. Bias is
K = 50—-4000 M1, At K = 50 M~ the fraction of analyte troublesome since it cannot be eliminated through replicate
complexed ranges from 0.2 to 0.8. Whi€ris higher than 800 experiments. Therefore, thixereciprocal plot is also unsuitable
M1, the fraction of analyte complexed is equal to or greater for estimating the binding constant in this case.
than 0.8 at all of the additive concentrations (e.g., the fraction =~ Comparing the Relative 95% Ranges at LowK and High
of analyte complexed ranges from 0.952 to 0.997 for the additive K. Comparing the distributions reveals that the relative error
concentrations used in this paper whén= 4000 M™1). At in the binding constant estimates does not increase as quickly
higher K values, when the fraction of analyte complexed is at highK as it does for lowK. At low K the 95% range
above 0.8, the 95% ranges of the binding constant estimatesincreases quickly, making it impossible to obtain accurate
increase. With the exception of tiggeciprocal plots, the ranges  binding constant estimates. This does not occur at Kigtven
of the binding constant estimates for the nonlinear, double when the binding constant is increased to 4000t MFigure 4
reciprocal, andk-reciprocal methods are nearly identical, and shows that the relative 95% ranges of teestimates at low
weighting does not seem to have any effect. The unweighted binding constants are much higher that those at tghThe
y-reciprocal method is significantly poorer than the other relative 95% range using the nonlinear regression meth&d at
methods at higheK values. When ideally weighted though, = 3.125 M1 (fraction of analyte complexed ranging from 0.015
the 95% ranges of the-reciprocal binding constant estimates to 0.2) is approximately 14 times of that wh&h= 800 M1
are comparable to the other methods. Again, it was possible (fraction of analyte complexed ranging from 0.8 to 0.985), even
to ideally weight the data in the simulated experiments, but though they both cover similar amounts of the binding isotherm
would be difficult to do so in practical cases. Therefore, when (i.e., the difference in the fraction of analyte complexed at the
the additive concentrations only cover the upper portion of the lowest and highest additive concentration is the same for both).
binding isotherm, it would be more reasonable to use one of Even atk = 4000 M1, the relative 95% range is approximately
the methods that are less dependent on choosing the propepne-quarter of that whei = 3.125 Mt even though the
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Figure 3. The distributions of the binding constant estimates calculated using (A) double reciprocgrg@procal, (C)x-reciprocal, and (D)
nonlinear regression methods over=K50—4000 M. The symbols are the same as in Figure 2.

fraction of analyte complexed only ranges from 0.952 to 0.997. betweens = 0.2 and 0.8. Unfortunately, this method only
This contrasts what is suggested by some theories that the erroconsiders the error contributed by a single point, not a range of
contributed by the upper and lower portion of the binding additive concentrations. It does not account for differences in
isotherm should be symmetrical around the point where half of the shape of the lower and upper portions of the binding
the analyte is complexed. isotherms.

Semiempirical Prediction of the 95% Range. An important Weber and AndersSfisuggested that the information content
goal of Monte Carlo simulations should be to determine the of the measured responses should be maximized to ensure the
optimum conditions for actual experiments. It would be useful reliability of the estimated equilibrium constant. The informa-
to predict the effect of the additive concentration range on the tion content of a single measuremeHpy) is given by
reliability of the estimated binding constant.

Several researchers have proposed methods to assess the I(p) = —plog, p — (1 — p)log,(1 — p) (10)
reliability of binding constants estimated using a certain additive
concentration range. Deranléawsuggested that propagation
of error could be used to estimate the relative error in the
calculated binding constant:

wherep is the fraction of analyte complexed. The amount of
information provided by a number of measurements can be
found by summing the information content of the individual
measurements. Although this approach accounts for the range
AK > AS 1 + 1 9) of additive concentrations, the data are still considered individu-
K V & a- 3)2 ally, and the shape of the curve is not accounted for.

Carta et aP>%® proposed that reliable estimates for the

whereAK is the error in the binding constaii sis the fraction ¢ qyilibrium constant can be obtained when additive concentra-

of analyte complexed, ands is the error in the fraction of  ions with a wide range o6 values are testedG represents
analyte complexed. Accordmg to eq 9 the error contributed he fraction of uncomplexed analyte and is given by
by the lower and upper portion of the binding isotherm should

be symmetrical around the point where half of the analyte is 1
complexed, suggesting that the relative error in the estimated G=
binding constant will be minimized when data are collected Kx/(a—i- b+ K2 — 4ab

(11)
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Relative 95% Range of the Binding Constant Estimates
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True Binding Constant (M )

2000 3000 4000

Figure 4. The relative 95% ranges of the binding constants estimated
using the double reciprocalaf, weighted double reciprocaldj,
y-reciprocal ©), weightedy-reciprocal ), x-reciprocal {), weighted
x-reciprocal (&), and nonlinear regression method§ for (A) K =
1-50 M-t and (B)K = 504000 M,

wherea andb are the concentrations of the analyte (substrate)
and the additive (ligand). When the concentration of the
additive is much greater than that of the analyte (common in
most CE binding studies), eq 11 simplifies to

1

C=17Kp

12)
which is equal to the fraction of analyte uncomplexed at additive
concentrationb. The error inK should be minimized by
maximizing

(Gi - G‘mear)2 (13)

whereGneanis the average value @& andn is the number of
measurements. This gives a measure of the range of the bindin

isotherm covered by the additive concentrations and is ap-

proximately symmetrical around the point where half of the
analyte is complexed.

Unfortunately, none of the theories proposed above accurately
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Figure 5. The (A) change in slope, (B) information content, and (C)
dispersion of G for binding isotherms witth = 1—-800 M* and a set
range of additive (ligand) concentrations (5, 23.75, 42.5, 61.25, and
80 mM).

experiments simulated in this paper. The error in the estimate
of K should be minimized at maximum valuesX{f5; — Gea)?
andZI(p). The dispersion of G is greatest whir= 50 M1,
where data is collected symmetrically around the point where
half of the analyte is complexed. Also, the method proposed
by Carta et al. suggests that there should be similar errors in
the binding constant estimateskat= 3.125 M~ andK = 800
M~1. This does not agree with Figure 4 in which the minimum
relative 95% range of the binding constants iKat 200 M1
and substantially narrower ranges are achieved when the additive
concentrations cover the upper portion of the binding isotherm
(i.e., where the fraction of analyte complexed is greater than
0.5). As shown in Figure 5B, information theory does not
explain the trends in Figure 4 either, since it predicts that the
error in the estimate dk will be minimized atk = 25 M1
and that the error il will generally be lower when the additive
concentrations cover the lower portion of the binding isotherm.
Previous explanations of the effect of the additive concentra-
tion range focused on the amount of error contributed by the
individual data points, but did not account for the geometric
properties of the binding isotherm. In eqgs 2 to 5, the equilibrium
constant dictates the amount of curvature in the isotherm.
Therefore, it is impossible to make an accurate estimate of
when there is no observable curvature in the isotherm. When
this approach is used, it is clear that better estimatek foan
be achieved when the additive concentrations cover the upper
portion of the binding isotherm. Comparing the isotherms for
K =3.125 M andK = 800 M1 in Figure 1 reveals that even
though both curves cover a similar amount of the binding
isotherm (analyte complexed ranging from 0.015 to 0.2Kor
= 3.125 M! and 0.8 to 0.985 foK = 800 M), there is
obviously more curvature in the plot fét = 800 M~ than in
that forK = 3.125 ML,

The amount of curvature in a binding isotherm can be
estimated by finding the difference between the slope at the
lowest additive concentration and that at the highest concentra-
tion. The slope at any point on the curve is equal to the first
qjerivative of the response with respect to the additive concentra-
ion. For example, the first derivative of eq 5 is

8(”/‘2[1) _ (:uep,AC - /"ep,A)KAC
J[C] (1+ Kuc[C)?

(14)

explain the trends observed in this experiment. Figure 5 shows

the dispersions dB values and the information contents of the

Figure 5A shows the difference in the slope of the lowest and
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highest additive concentration ové& = 0—800 M™% The 05
change in slope explains the trends of the relative 95% range 1404
presented in this paper remarkably well. The maximum
difference in the slope occurs at approximatkly= 200 M1,

in agreement with the minimum relative 95% range observed
in Figure 4. Also, the difference in the slope is significantly
larger when the data covers the upper portion of the isotherm,
again in agreement with Figure 4.

Figure 6 shows the correlation between the relative 95% range
of binding constant estimates vs the reciprocal of the difference
in slopes, the information content, and the dispersida.ifihere
appears to be an excellent correlation between the relative 95%
range and the reciprocal of the change in slope. However, closer
inspection reveals two lines: one when the additive concentra-
tions cover the lower portion of the isotherm and one when the
additive concentrations cover the upper portion. The two
distinct correlations indicate that the error introduced by the
upper and lower portions of the binding isotherm propagate to
the error in the binding constant estimates differently. The
difference may be caused by the data spacing, which is not
accounted for by the change in slope. When the data is evenly
spaced, and the additive concentrations only cover the upper
portion of the isotherm, the curvature in the plot is concentrated
over several of the points, putting undue emphasis on these
points. This may account for the larger relative 95% ranges of
binding constant estimates than predicted by the inverse of the
difference in slope. When the additive concentrations cover
the lower portion of the isotherm, the curvature is more evenly
spaced over the data set giving rise to a narrower range of
binding constant estimates than would be predicted by the
change in slope.

Regardless of the two distinct correlations, the inverse of the
change in slope is a useful indicator of the significance of the
estimated equilibrium constant. It correctly determines the
conditions which minimize the relative 95% range Kf
estimates. Also the inverse change in slope is linearly correlated
with the relative 95% range of equilibrium constant estimates
over a wide range of conditions.

1/Z1(p) (Figure 6B) and (G — Gmean? (Figure 6 C) do
not correlate well with the relative 95% range of binding
constant estimates. There are two distinct correlations for both
the information content and dispersion@ The differences
in the slopes of the two correlations are much greater for the
information content and the dispersion in G than that of the
change in slope. Also, the correlations are not all linear. There
is no well defined intersection in the correlations for the
information content and the dispersion @& The rounded
intersections of the correlations indicate that the information
content and the dispersion in G do not accurately predict the
minimum relative 95% range (i.e., the minimum relative 95%
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range and the minimum If(p) and 1E(G; — Gmea)? do not 0 —{fime oo l : l : | |
occur at the same points), and are not suitable for predicting 0 100 200 300 400 500 600 700
the optimum experimental conditions. 1/%(G -G )2
mean
Correlation Coefficient Figure 6. Correlations between the relative 95% ranges of binding

The correlation coefficientR) is probably the most com- ~ constants estimated using the nonlinear regression method and (A) (
monly quoted indicator of how well a data set fits a particular SIoP€)™, (B) (Z1(p)) ", and (C) &(Gi — Gmeay?) * for K = 1-50 M
mathematical model, even though highvalues are sometimes (©) andK = 50-4000 M-: (©)-
obtained when the data does not fit the model. For this reason, Figure 7 shows the median correlation coefficients for the
visual inspections of the data plots should always be used todifferent calculation methods over the range of binding constants
confirm the applicability of a model to a certain data set. tested. AtlowK, where the additive concentrations only cover
Nonetheless, because it is impractical to visually inspect the the lower portion of the binding isotherm, tHe? for the
many thousands of experiments simulated in this paper, thex-reciprocal andg/-reciprocal plots decrease significantly, reflect-
correlation coefficient was used to compare how well the quality ing the unreliable nature of th& estimates under these
of the data was reflected by the various calculation methods. conditions. Weighting the data increas®<or thex-reciprocal
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Figure 7. The median correlation coefficient®% for the double
reciprocal @), weighted double reciprocaldj, y-reciprocal Q),

weightedy-reciprocal §), x-reciprocal £), weightedx-reciprocal <),

and nonlinear regression method3 for (A) K = 1—-20 M~* and (B)
K = 50—4000 M.

4000

andy-reciprocal plots, but this is in line with the narrower range

of binding constant estimates obtained through weighting. The
correlation coefficient is a very poor measure of the accuracy
when double reciprocal plots are used to estimate binding
constants when the additive concentrations only cover the lower

portion of the binding isotherm. Very higR? values are
obtained even when the relative 95% rangeKoéstimates is

high. This is misleading since it suggests that the data fits the

model very well even though it is impossible to make valid
estimates folK. The problem is more severe with weighted
double reciprocal plots where the medRhis almost one even
whenK = 1 M~L. The nonlinear fitting method also gives high
R? values at lowkK.

The decrease if? at highK is less pronounced than that
observed at lovK. The smaller decrease % is expected since
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binding constant at both loW and highK, this method should
be used to assess the quality of the experimental data.

Conclusions

All of the calculation methods gave similar ranges of binding
constant estimates when the ideal weighting functions were used.
However, because it is difficult to obtain the weighting function
accurately in practical applications, we recommend using the
nonlinear regression method because the weighted and un-
weighted regression give similar results, making the estimated
binding constant less dependent on the choice of the weighting
function.

This paper demonstrated the importance of choosing an
appropriate range of additive (ligand) concentrations when
measuring a binding constant. The binding isotherm is deter-
mined by three parameters: the responses of the free and
complexed analyte establish the minimum and maximum values
of the isotherm, and the binding constant determines the
curvature of the isotherm. In most cases the properties of the
uncomplexed analyte can be accurately determined. Therefore,
the accuracy oK is often dictated by the accuracy of the
measurement of the maximum response and the curvature of
the isotherm. As can be seen in Figure 1, at Ikwalues,
neither the maximum response nor the curvature of the isotherm
can be accurately determined, leading to high uncertainty in
the binding constant estimates. At highvalues, the complex
mobility can be accurately determined and there is more
curvature observed in the isotherm, giving rise to more accurate
estimates of the binding constant.

The optimal additive concentration range is related to the
strength of the interaction to be studied. Although for this paper
K was adjusted for a set range of additive concentrations, in
practical experiments it is necessary to adjust the additive
concentration range to match the binding constant. It was shown
that the additive concentrations should cover the central to upper
portion of the binding isotherm (i.e., where the fraction of
analyte complexed is above 0.5). At high€y the additive
concentrations should be low so the fraction of analyte com-
plexed falls within the ideal range. Similarly, at higl&rlower
additive concentrations need to be used. In practical applica-
tions, a preliminary experiment should be performed to provide
a rough estimate of the binding constant. The preliminary
estimate oK can then be used to determine the range of additive
concentrations which maximizes the difference in the slope of
the isotherm, thereby minimizing the error in the final estimate
of the binding constant.
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