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Rectangular hyperbolae have been used both to estimate equilibrium constants and to describe chemical
processes dictated by equilibria. The propagation of error from the experimental measurements to the estimated
constants, however, has not been well understood. In this paper, simulated experiments are used in a Monte
Carlo analysis to compare the distributions of binding constants estimated by various calculation methods
under different experimental conditions. The necessity of matching the range of additive (ligand) concentrations
to the binding constant of the chemical interaction is demonstrated. It is shown that the relative error in the
binding constant estimate is lower when the additive concentrations cover the central to upper portion of the
binding isotherm (i.e., where the fraction of analyte complexed is above 0.5). The difference in the slope of
the binding isotherm at the lowest and highest additive concentration used for the measurements is a good
indicator of the reliability of the binding constant estimated under a specific set of conditions.

Introduction

Over the past 85 years, rectangular hyperbolae have been used
to describe a variety of chemical properties influenced by
molecular equilibria1 including spectrophotometry,2-7 NMR
chemical shifts,8-13 Michaelis-Menten kinetics,14-21 ion trans-
port across membranes,22 pharmacokinetics,23-26 and even algal
growth rates.27-29 All of these studies are based on a certain
chemical response dictated by a 1:1 interaction between a
substrate and a ligand. A rectangular hyperbola generally can
be expressed as1

wherey is the response,x is the ligand concentration, and d, e,
and f are constants. One of the constants is redundant since eq
1 can be rearranged, allowing the response to be described using
two constants. One constant describes the equilibrium (the
binding constant or dissociation constant) while the other
describes the maximum response range (i.e., the difference
between the maximum and minimum response). Equation 1
can be expressed using either association constants (common
in spectroscopic studies) or dissociation constants (common in
kinetic and biochemical studies).

Equations taking the general form of eq 1 have been
developed independently in many research areas including
spectrophotometry, NMR, and Michaelis-Menten kinetics.
When spectrophotometric methods are used, eq 1 is usually
expressed as

whereA is the measured absorbance,AS is the absorbance of

the substrate in the absence of ligand,b is the optical path length,
[S0] is the initial concentration of the substrate,εSL andεS are
the molar absorptivities of the substrate/ligand complex and the
substrate respectively,K is the binding constant, and [L] is the
ligand concentration.

If NMR is used to study chemical binding, eq 1 is usually
written as

where δ is the measured chemical shift,δS and δSL are the
chemical shifts of the substrate and the substrate/ligand complex,
respectively,K is the binding constant, and [L] is the ligand
concentration.

Michaelis-Menten kinetics present eq 1 as

whereV is the observed rate of the reaction,Vm is the maximum
rate of the reaction achieved when the catalyst is fully
complexed, [S] is the concentration of the substrate, andKm is
the dissociation constant. Equation 4 takes a slightly different
form than eqs 2 and 3 because it is expressed according to the
dissociation constant (Km ) 1/K).

Recently, it has been shown that, in capillary electrophoresis
(CE), analyte mobility in the presence of analyte-additive
interactions can be described according to30-40

whereµep
A is the net electrophoretic mobility of the analyte,ν is

a correction factor which normalizesµep
A to conditions where

[C] approaches zero, [C] is the concentration of the complex-
ation additive (analogous to [L]),KAC is the formation constant
of the complex AC, andµep,AC andµep,A are the electrophoretic
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mobilities of the analyte-additive complex AC and the un-
complexed analyte, respectively. Clearly, eq 5 is also analogous
to eq 1.

The constants in eqs 2 to 5 are usually estimated by measuring
the response at several ligand concentrations followed by one
of several regression procedures. Although a nonlinear regres-
sion can be used to solve the constants directly, eq 1 is often
linearized by one of the following equations:

The constants are estimated from the slopes and the intercepts
of the straight lines.1 The use of eqs 6-8 have acquired
different names in different research fields but can be referred
to most generally as double reciprocal (eq 6; also referred to as
Lineweaver-Burk15 or Benesi-Hildebrand2 plots),y-reciprocal
(eq 7), andx-reciprocal (eq 8; also referred to as Eadie16 or
Scatchard41 plots) methods. The linearizations of eq 5 are
shown in Table 1.

It has long been realized that although the nonlinear regression
and each of the three linearizations are based on the same
equation, they often give different estimates and confidence
intervals for the constants when applied to the same data set.42-45

Linearizing eq 1 to eqs 6 to 8 invalidates some of the
assumptions made in performing the least squares regression
analyses, including introducing error into the independent
variable and transforming the error in the data to a non-Gaussian
distribution. The data spacing is also changed when eq 1 is
rearranged to eqs 6 and 8, which alters the weight on certain
measurements. These problems can often be overcome if the
data is weighted according to the functions listed in Table 1.1

Because of the complexity of the regression calculations, it
is difficult to show how error is propagated through the different
methods analytically. Dowd and Riggs43 first used Monte Carlo
analyses to compare the different calculation methods and their
estimates of the constants. Since then a number of researchers
have used Monte Carlo analyses to simulate binding experi-
ments.46-53 It has been shown that the nonlinear regression
method minimizes both the error and the bias in the estimates
of the constants.

Another concern is the effect of the experimental design on
the constants estimated using the different methods. The range

of ligand concentrations over which responses are measured has
been identified as one of the most important aspects of the
experimental design.1,44 Intuitively, to minimize the error in
the estimate ofK, [L] should cover a significant portion of the
possible response range with a number of points near the ligand
concentration where half of the substrate is complexed. Theories
do suggest that the error in the estimate of the equilibrium
constant will be minimized when responses are measured over
the central portion of the binding isotherm (where the fraction
of analyte complexed ranges from 0.2 to 0.8).44 Several Monte
Carlo analyses have been made to determine the effect of the
ligand concentration range on the estimate of the equilibrium
constant.46,47,50 Unfortunately, these studies only tested a few
conditions and only qualitative interpretations could be extracted.
Not enough data were collected to truly assess the theories
proposed to describe the effect of ligand concentration on the
error in binding constant estimates.

In this paper, the effect of the ligand concentration on the
error in the estimate ofK is studied more thoroughly. The
nonlinear regression is compared with the three linearizations
of the binding isotherm. The error and bias in the binding
constant estimates is compared over a wide range of conditions,
including cases where the fraction of substrate complexed is
below 0.2 for all [L] or above 0.8 for all [L]. The terminology
developed for CE (eq 5) will be used since this is the primary
research interest of our group (i.e., analyte and additive are
analogous to substrate and ligand respectively). The constants
and errors in the data are typical for CE. It should be
emphasized that although CE is used as an example in this paper,
the equations are analogous to those used in many other research
areas, allowing the conclusions presented here to be applied to
complexation chemistry in general.

Methods

Monte Carlo simulations of a dynamic complexation CE
experiment were performed using a Visual Basic macro in
Microsoft Excel 5.0 on a Pentium PC. The simulations were
made assuming the following:µep,A ) 2.5 × 10-4 cm2 V-1

s-1; µep,AC ) 1.0 × 10-4 cm2 V-1 s-1, separation potential)
30 kV, total capillary length) 57 cm, length to the detector)
50 cm. Simulations were made for binding constants ranging
from 1 to 4000 M-1 with a set range of additive concentrations.
The additive concentrations used were 5, 23.75, 42.5, 61.25,
and 80 mM. The concentration of the analyte is assumed to be
much smaller than that of the additive, allowing the initial
additive concentration ([C]0) to be substituted for [C] in eq 5.40

This is consistent with the other methods described by eqs 2-4.
Equation 5 was used to calculate the true net analyte mobility

TABLE 1: Equations Used in CE and Variances in the Transformedy for the Different Calculation Methods

calculation method equation σy′
2a

nonlinear regression
(νµep

A - µep,A) )
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1 + KAC[C]
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2
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2 is the variance in (Vµep
A - µep,A); the weight for each point is equal to 1/σy′
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at each additive concentration. The random number generator
in Excel 5.0 was used to produce an experimental mobility
according to a normal distribution which had a mean equal to
the true mobility and a standard deviation of 8.75× 10-7 cm2

V-1 s-1. Two experimental mobilities were generated for each
additive concentration. Four experimental mobilities were
generated for an additive concentration of 0 mM, again with a
standard deviation of 8.75× 10-7 cm2 V-1 s-1, to calculate
µep,A. The experimental mobilities were then used to estimate
the equilibrium constant according to one of the calculation
methods. All regressions were made according to the least-
squares variance-covariance method. This procedure was
repeated 1000 times for each calculation method at eachK.
Thirty seven values forK were tested, giving rise to over 3.6
million simulated measurements, emphasizing the necessity of
the computational approach used.

The effect of varyingK for a set range of additive concentra-
tions is shown in Figure 1. AsK changes, so does the portion
of the binding isotherm covered by the additive concentrations.
At low K, the additive concentrations only cover the lower
portion of the binding isotherm (i.e., the portion where the
fraction of analyte complexed is low). Conversely, at highK,
the additive concentrations only cover the upper portion of the
binding isotherm (i.e., the portion where the fraction of analyte
complexed is high). Therefore, varyingK for a set group of
additive concentrations is analogous to scaling the additive
concentration range for a setK. The absolute values ofK and
the additive concentrations are not as important as the portion
of the binding isotherm that is covered when both are consid-
ered. AtK ) 50 M-1, the fraction of analyte complexed ranges
from 0.2 to 0.8, which has been previously suggested as the
ideal range of additive concentrations.44 At K ) 3.125 M-1,
the fraction of analyte complexed is equal to or below 0.2 for
all of the additive concentrations used in this paper. AtK )
800 M-1, the fraction of analyte complexed is equal to or above
0.8 for all of the additive concentrations.

Results and Discussion

Error and Bias at Low Equilibrium Constants. Figure 2
depicts the distributions of the binding constants estimated using
the different calculation methods forK ) 1-50 M-1. The
markers represent the medians of the distributions. Medians

were used because of their robustness and to minimize the
influence of the grossly incorrect estimates that can occur when
the additive concentrations do not cover the optimal range of
the binding isotherm. The solid line indicates the true equi-
librium constant. Therefore, deviation of the median from the
solid line indicates bias in the calculation method. The dashed
lines depict the 95% range of the distributions. The 95% range
gives an indication of the reliability of the calculation method.
Obviously a narrow distribution of binding constant estimates
is preferable.

Comparing the different calculation methods shows that the
95% range of the nonlinear regression method is generally
smaller than that of the unweighted linear methods. In all three
linearizations the distributions using weighted data are narrower
than the unweighted forK ) 1-50 M-1. When ideally
weighted, all of the calculation methods studied gave nearly
identical 95% ranges of the binding constant estimates. The
weighted and unweighted nonlinear regressions are identical
since no weighting is required when the errors in the data points
are equal. The elimination of the weighting procedure is a major
advantage of the nonlinear regression method. It should be
emphasized that because the errors in this experiment were
simulated, it was possible to calculate the exact weighting
functions for each method. In practical applications, the error
at each point is usually estimated, which may give rise to
inaccurate weighting functions. The 95% ranges presented for
the weighted methods therefore represent the minimum range
possible with ideal weighting functions. The nonlinear regres-
sion method is the least dependent on the choice of the weighting
function and should provide the most reliable binding constant
estimate in practical applications.

As shown in Figure 1, atK ) 50 M-1, the fraction of analyte
complexed ranges from 0.2 to 0.8. It has been previously
suggested that this is the range of additive concentrations that
minimizes the error in the estimate of the binding constant.44

As the binding constant decreases from 50 M-1, the fraction of
analyte complexed at some of the additive concentrations drops
below the 0.2 threshold. WhenK is below 3.125 M-1, the
fraction of analyte complexed is less than 0.2 for all of the
additive concentrations used.

At low binding constants, where the fraction of analyte
complexed is below 0.2, there is a significant increase in the
95% range of theK estimates, especially when the three linear
methods are used. When the additive concentrations only cover
the lower portion of the binding isotherm, it is impossible to
accurately determine the value ofK. In some cases, a substantial
portion of the estimates was negative. At lowK values, the
distributions of binding constant estimates are no longer
symmetrical around the median. This may cause problems when
calculating the confidence intervals for the estimated binding
constants.

Bias becomes significant in the three linearized methods
when the binding constant is low. In some cases, the medians
of the distributions were negative, indicating that the method
gave more negative estimates forK than positive estimates.
Weighting did not remove the bias from the binding constant
estimates. Bias is usually a serious problem since it cannot be
eliminated through replicate experiments. In binding experi-
ments though, the amount of bias present at lowK is small in
relation to the 95% ranges of the distributions, suggesting that
bias is not the most critical problem in this case. No bias was
detected when the nonlinear method was used to estimate the
equilibrium constant, further supporting the premise that the

Figure 1. Binding isotherms for a set range of additive (ligand)
concentrations at K) 1 M-1 (O), 3.125 M-1 (b), 15 M-1 (0), 50 M-1

(9), 200 M-1 (]), 800 M-1 ([), and 4000 M-1 (4).

Determination of Binding Constants J. Phys. Chem. A, Vol. 102, No. 41, 19988065



nonlinear regression method is more reliable than the three
linearizations.

Error and Bias at High Equilibrium Constants. Figure 3
depicts the distributions of the binding constant estimates for
K ) 50-4000 M-1. At K ) 50 M-1 the fraction of analyte
complexed ranges from 0.2 to 0.8. WhenK is higher than 800
M-1, the fraction of analyte complexed is equal to or greater
than 0.8 at all of the additive concentrations (e.g., the fraction
of analyte complexed ranges from 0.952 to 0.997 for the additive
concentrations used in this paper whenK ) 4000 M-1). At
higher K values, when the fraction of analyte complexed is
above 0.8, the 95% ranges of the binding constant estimates
increase. With the exception of they-reciprocal plots, the ranges
of the binding constant estimates for the nonlinear, double
reciprocal, andx-reciprocal methods are nearly identical, and
weighting does not seem to have any effect. The unweighted
y-reciprocal method is significantly poorer than the other
methods at higherK values. When ideally weighted though,
the 95% ranges of they-reciprocal binding constant estimates
are comparable to the other methods. Again, it was possible
to ideally weight the data in the simulated experiments, but
would be difficult to do so in practical cases. Therefore, when
the additive concentrations only cover the upper portion of the
binding isotherm, it would be more reasonable to use one of
the methods that are less dependent on choosing the proper

weighting function (i.e., nonlinear, double reciprocal, orx-
reciprocal).

Bias is significant in thex-reciprocal plot at higherK values,
and weighting the data does not alleviate the problem. Bias is
troublesome since it cannot be eliminated through replicate
experiments. Therefore, thex-reciprocal plot is also unsuitable
for estimating the binding constant in this case.

Comparing the Relative 95% Ranges at LowK and High
K. Comparing the distributions reveals that the relative error
in the binding constant estimates does not increase as quickly
at high K as it does for lowK. At low K the 95% range
increases quickly, making it impossible to obtain accurate
binding constant estimates. This does not occur at highK, even
when the binding constant is increased to 4000 M-1. Figure 4
shows that the relative 95% ranges of theK estimates at low
binding constants are much higher that those at highK. The
relative 95% range using the nonlinear regression method atK
) 3.125 M-1 (fraction of analyte complexed ranging from 0.015
to 0.2) is approximately 14 times of that whenK ) 800 M-1

(fraction of analyte complexed ranging from 0.8 to 0.985), even
though they both cover similar amounts of the binding isotherm
(i.e., the difference in the fraction of analyte complexed at the
lowest and highest additive concentration is the same for both).
Even atK ) 4000 M-1, the relative 95% range is approximately
one-quarter of that whenK ) 3.125 M-1 even though the

Figure 2. The distributions of the binding constant estimates calculated using (A) double reciprocal, (B)y-reciprocal, (C)x-reciprocal, and (D)
nonlinear regression methods overK ) 1-50 M-1. The markers are the medians of the distributions for the weighted (O) and unweighted (])
methods. The dashed lines define the 95% ranges of the distributions for the weighted (- -) and unweighted (- -) methods.
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fraction of analyte complexed only ranges from 0.952 to 0.997.
This contrasts what is suggested by some theories that the error
contributed by the upper and lower portion of the binding
isotherm should be symmetrical around the point where half of
the analyte is complexed.44

Semiempirical Prediction of the 95% Range.An important
goal of Monte Carlo simulations should be to determine the
optimum conditions for actual experiments. It would be useful
to predict the effect of the additive concentration range on the
reliability of the estimated binding constant.

Several researchers have proposed methods to assess the
reliability of binding constants estimated using a certain additive
concentration range. Deranleau44 suggested that propagation
of error could be used to estimate the relative error in the
calculated binding constant:

where∆K is the error in the binding constantK, s is the fraction
of analyte complexed, and∆s is the error in the fraction of
analyte complexed. According to eq 9, the error contributed
by the lower and upper portion of the binding isotherm should
be symmetrical around the point where half of the analyte is
complexed, suggesting that the relative error in the estimated
binding constant will be minimized when data are collected

betweens ) 0.2 and 0.8. Unfortunately, this method only
considers the error contributed by a single point, not a range of
additive concentrations. It does not account for differences in
the shape of the lower and upper portions of the binding
isotherms.

Weber and Anderson54 suggested that the information content
of the measured responses should be maximized to ensure the
reliability of the estimated equilibrium constant. The informa-
tion content of a single measurement (I(p)) is given by

wherep is the fraction of analyte complexed. The amount of
information provided by a number of measurements can be
found by summing the information content of the individual
measurements. Although this approach accounts for the range
of additive concentrations, the data are still considered individu-
ally, and the shape of the curve is not accounted for.

Carta et al.55,56 proposed that reliable estimates for the
equilibrium constant can be obtained when additive concentra-
tions with a wide range ofG values are tested.G represents
the fraction of uncomplexed analyte and is given by

Figure 3. The distributions of the binding constant estimates calculated using (A) double reciprocal, (B)y-reciprocal, (C)x-reciprocal, and (D)
nonlinear regression methods over K) 50-4000 M-1. The symbols are the same as in Figure 2.

∆K
K

g ∆sx1

s2
+ 1

(1 - s)2
(9)

I(p) ) -p log2 p - (1 - p)log2(1 - p) (10)

G ) 1

Kx(a + b + K-1)2 - 4ab
(11)
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wherea andb are the concentrations of the analyte (substrate)
and the additive (ligand). When the concentration of the
additive is much greater than that of the analyte (common in
most CE binding studies), eq 11 simplifies to

which is equal to the fraction of analyte uncomplexed at additive
concentrationb. The error in K should be minimized by
maximizing

whereGmeanis the average value ofG andn is the number of
measurements. This gives a measure of the range of the binding
isotherm covered by the additive concentrations and is ap-
proximately symmetrical around the point where half of the
analyte is complexed.

Unfortunately, none of the theories proposed above accurately
explain the trends observed in this experiment. Figure 5 shows
the dispersions ofG values and the information contents of the

experiments simulated in this paper. The error in the estimate
of K should be minimized at maximum values ofΣ(Gi - Gmean)2

andΣI(p). The dispersion of G is greatest whenK ) 50 M-1,
where data is collected symmetrically around the point where
half of the analyte is complexed. Also, the method proposed
by Carta et al. suggests that there should be similar errors in
the binding constant estimates atK ) 3.125 M-1 andK ) 800
M-1. This does not agree with Figure 4 in which the minimum
relative 95% range of the binding constants is atK ) 200 M-1

and substantially narrower ranges are achieved when the additive
concentrations cover the upper portion of the binding isotherm
(i.e., where the fraction of analyte complexed is greater than
0.5). As shown in Figure 5B, information theory does not
explain the trends in Figure 4 either, since it predicts that the
error in the estimate ofK will be minimized atK ) 25 M-1

and that the error inK will generally be lower when the additive
concentrations cover the lower portion of the binding isotherm.

Previous explanations of the effect of the additive concentra-
tion range focused on the amount of error contributed by the
individual data points, but did not account for the geometric
properties of the binding isotherm. In eqs 2 to 5, the equilibrium
constant dictates the amount of curvature in the isotherm.
Therefore, it is impossible to make an accurate estimate ofK
when there is no observable curvature in the isotherm. When
this approach is used, it is clear that better estimates forK can
be achieved when the additive concentrations cover the upper
portion of the binding isotherm. Comparing the isotherms for
K ) 3.125 M-1 andK ) 800 M-1 in Figure 1 reveals that even
though both curves cover a similar amount of the binding
isotherm (analyte complexed ranging from 0.015 to 0.2 forK
) 3.125 M-1 and 0.8 to 0.985 forK ) 800 M-1), there is
obviously more curvature in the plot forK ) 800 M-1 than in
that for K ) 3.125 M-1.

The amount of curvature in a binding isotherm can be
estimated by finding the difference between the slope at the
lowest additive concentration and that at the highest concentra-
tion. The slope at any point on the curve is equal to the first
derivative of the response with respect to the additive concentra-
tion. For example, the first derivative of eq 5 is

Figure 5A shows the difference in the slope of the lowest and

Figure 4. The relative 95% ranges of the binding constants estimated
using the double reciprocal (4), weighted double reciprocal (0),
y-reciprocal (O), weightedy-reciprocal (3), x-reciprocal (]), weighted
x-reciprocal (∞), and nonlinear regression methods (:) for (A) K )
1-50 M-1 and (B)K ) 50-4000 M-1.

G ) 1
1 + Kb

(12)

∑
i)1

n

(Gi - Gmean)
2 (13)

Figure 5. The (A) change in slope, (B) information content, and (C)
dispersion of G for binding isotherms withK ) 1-800 M-1 and a set
range of additive (ligand) concentrations (5, 23.75, 42.5, 61.25, and
80 mM).

∂(νµep
A )

∂[C]
)

(µep,AC - µep,A)KAC

(1 + KAC[C])2
(14)
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highest additive concentration overK ) 0-800 M-1. The
change in slope explains the trends of the relative 95% range
presented in this paper remarkably well. The maximum
difference in the slope occurs at approximatelyK ) 200 M-1,
in agreement with the minimum relative 95% range observed
in Figure 4. Also, the difference in the slope is significantly
larger when the data covers the upper portion of the isotherm,
again in agreement with Figure 4.

Figure 6 shows the correlation between the relative 95% range
of binding constant estimates vs the reciprocal of the difference
in slopes, the information content, and the dispersion inG. There
appears to be an excellent correlation between the relative 95%
range and the reciprocal of the change in slope. However, closer
inspection reveals two lines: one when the additive concentra-
tions cover the lower portion of the isotherm and one when the
additive concentrations cover the upper portion. The two
distinct correlations indicate that the error introduced by the
upper and lower portions of the binding isotherm propagate to
the error in the binding constant estimates differently. The
difference may be caused by the data spacing, which is not
accounted for by the change in slope. When the data is evenly
spaced, and the additive concentrations only cover the upper
portion of the isotherm, the curvature in the plot is concentrated
over several of the points, putting undue emphasis on these
points. This may account for the larger relative 95% ranges of
binding constant estimates than predicted by the inverse of the
difference in slope. When the additive concentrations cover
the lower portion of the isotherm, the curvature is more evenly
spaced over the data set giving rise to a narrower range of
binding constant estimates than would be predicted by the
change in slope.

Regardless of the two distinct correlations, the inverse of the
change in slope is a useful indicator of the significance of the
estimated equilibrium constant. It correctly determines the
conditions which minimize the relative 95% range ofK
estimates. Also the inverse change in slope is linearly correlated
with the relative 95% range of equilibrium constant estimates
over a wide range of conditions.

1/ΣI(p) (Figure 6B) and 1/Σ(Gi - Gmean)2 (Figure 6 C) do
not correlate well with the relative 95% range of binding
constant estimates. There are two distinct correlations for both
the information content and dispersion inG. The differences
in the slopes of the two correlations are much greater for the
information content and the dispersion in G than that of the
change in slope. Also, the correlations are not all linear. There
is no well defined intersection in the correlations for the
information content and the dispersion inG. The rounded
intersections of the correlations indicate that the information
content and the dispersion in G do not accurately predict the
minimum relative 95% range (i.e., the minimum relative 95%
range and the minimum 1/ΣI(p) and 1/Σ(Gi - Gmean)2 do not
occur at the same points), and are not suitable for predicting
the optimum experimental conditions.

Correlation Coefficient

The correlation coefficient (R2) is probably the most com-
monly quoted indicator of how well a data set fits a particular
mathematical model, even though highR2 values are sometimes
obtained when the data does not fit the model. For this reason,
visual inspections of the data plots should always be used to
confirm the applicability of a model to a certain data set.
Nonetheless, because it is impractical to visually inspect the
many thousands of experiments simulated in this paper, the
correlation coefficient was used to compare how well the quality
of the data was reflected by the various calculation methods.

Figure 7 shows the median correlation coefficients for the
different calculation methods over the range of binding constants
tested. At lowK, where the additive concentrations only cover
the lower portion of the binding isotherm, theR2 for the
x-reciprocal andy-reciprocal plots decrease significantly, reflect-
ing the unreliable nature of theK estimates under these
conditions. Weighting the data increasesR2 for thex-reciprocal

Figure 6. Correlations between the relative 95% ranges of binding
constants estimated using the nonlinear regression method and (A) (∆
slope)-1, (B) (ΣI(p))-1, and (C) (Σ(Gi - Gmean)2)-1 for K ) 1-50 M-1

(O) andK ) 50-4000 M-1 (]).
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andy-reciprocal plots, but this is in line with the narrower range
of binding constant estimates obtained through weighting. The
correlation coefficient is a very poor measure of the accuracy
when double reciprocal plots are used to estimate binding
constants when the additive concentrations only cover the lower
portion of the binding isotherm. Very highR2 values are
obtained even when the relative 95% range ofK estimates is
high. This is misleading since it suggests that the data fits the
model very well even though it is impossible to make valid
estimates forK. The problem is more severe with weighted
double reciprocal plots where the medianR2 is almost one even
whenK ) 1 M-1. The nonlinear fitting method also gives high
R2 values at lowK.

The decrease inR2 at high K is less pronounced than that
observed at lowK. The smaller decrease inR2 is expected since
the calculation methods generally provide better binding constant
estimates when the additive concentrations cover the upper
portion of the binding isotherm. With the exception of the
y-reciprocal plots, the calculation methods all give similarR2

at highK. TheR2 for they-reciprocal plots is a poor indicator
of the reliability of the estimated binding constant. Even atK
) 4000 M-1, the medianR2 for they-reciprocal plots is almost
one. Becausex-reciprocal plots give the most realistic indication
of the ability of a data set to provide reliable estimates of the

binding constant at both lowK and highK, this method should
be used to assess the quality of the experimental data.

Conclusions

All of the calculation methods gave similar ranges of binding
constant estimates when the ideal weighting functions were used.
However, because it is difficult to obtain the weighting function
accurately in practical applications, we recommend using the
nonlinear regression method because the weighted and un-
weighted regression give similar results, making the estimated
binding constant less dependent on the choice of the weighting
function.

This paper demonstrated the importance of choosing an
appropriate range of additive (ligand) concentrations when
measuring a binding constant. The binding isotherm is deter-
mined by three parameters: the responses of the free and
complexed analyte establish the minimum and maximum values
of the isotherm, and the binding constant determines the
curvature of the isotherm. In most cases the properties of the
uncomplexed analyte can be accurately determined. Therefore,
the accuracy ofK is often dictated by the accuracy of the
measurement of the maximum response and the curvature of
the isotherm. As can be seen in Figure 1, at lowK values,
neither the maximum response nor the curvature of the isotherm
can be accurately determined, leading to high uncertainty in
the binding constant estimates. At highK values, the complex
mobility can be accurately determined and there is more
curvature observed in the isotherm, giving rise to more accurate
estimates of the binding constant.

The optimal additive concentration range is related to the
strength of the interaction to be studied. Although for this paper
K was adjusted for a set range of additive concentrations, in
practical experiments it is necessary to adjust the additive
concentration range to match the binding constant. It was shown
that the additive concentrations should cover the central to upper
portion of the binding isotherm (i.e., where the fraction of
analyte complexed is above 0.5). At higherK, the additive
concentrations should be low so the fraction of analyte com-
plexed falls within the ideal range. Similarly, at higherK, lower
additive concentrations need to be used. In practical applica-
tions, a preliminary experiment should be performed to provide
a rough estimate of the binding constant. The preliminary
estimate ofK can then be used to determine the range of additive
concentrations which maximizes the difference in the slope of
the isotherm, thereby minimizing the error in the final estimate
of the binding constant.
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